
COMP3161/COMP9164 Supplementary Lecture Notes

Syntax

Gabriele Keller Johannes Åman Pohjola*

September 26, 2024

1 Concrete Syntax versus Abstract Syntax

The concrete syntax of a programming language is designed with the user/programmer in mind:
it should be well structured and easy to read. The parser checks if a given program adheres
to the concrete syntax and translates it into a suitable internal representation. The internal
representation is usually quite different from the concrete syntax expression. To demonstrate why,
let us go back to the arithmetic expressions example. Consider the following three expressions:

� 1 + 2 ∗ 3

� (1) + (2) ∗ (3)

� ((1)) + (2 ∗ 3)

Syntactically, all three are different, but semantically, they denote exactly the same computation.
Therefore they should ideally have the same internal representation. If we would have chosen a
term representation of arithmetic expressions instead of an infix notation, we would not have had
to worry about the ambiguity of the grammar nor about superfluous parentheses, and we could
have defined the language with the following three simple rules:

i ∈ Int

(Num i) expr

t1 expr t2 expr

(Plus t1 t2) expr

t1 expr t2 expr

(Times t1 t2) expr

and all three expressions above would correspond to the term Plus (Num 1) (Times (Num 2)

(Num 3)). Such a term-based syntax is obviously not well suited as concrete syntax of a practical
language — it would be a nightmare to write a program in this style. However, it is the appropriate
format for the internal representation. A parser, therefore, has to translate expressions of the
concrete syntax into terms of the abstract syntax.

2 First Order Abstract Syntax

How can we specify the translation of expressions of concrete syntax into abstract syntax terms? As
we discussed previously, inference rules and judgements aren’t just for properties of single objects,
but also relationships between objects. Thus we use inference rules to define a relationship

e1 SExpr←→ e2 expr

*Just minor edits. Gabriele is the original, and main, author.

1

which holds if and only if the (concrete grammar) expression e1 corresponds to (abstract grammar)
expression e2.

We take the inference rules of SExpr as basis, and add the translation for each case:

e1 SExpr←→ e′1 expr e2 PExpr←→ e′2 expr

e1 + e2 SExpr←→ (Plus e′1 e′2) expr

e PExpr ←→ e′ expr

e SExpr ←→ e′ expr

e1 PExpr←→ e′1 expr e2 FExpr←→ e′2 expr

e1 * e2 PExpr←→ (Times e′1 e′2) expr

e FExpr ←→ e′ expr

e PExpr ←→ e′ expr

e SExpr←→ e′ expr

(e) FExpr←→ e′ expr

i ∈ Int

i FExpr←→ (Num i) expr

Previously, we used the inference rules to prove that an object had a certain property, e.g., that
1 + 3 is indeed an SExpr. With relations, inference rules become more interesting. For example,
we can view the rules as a description of how to construct a abstract syntax term for a given
arithmetic expression, say 1 + 3 ∗ 4. In this case, we start off with the proof/derivation goal
1 + 2 ∗ 3 SExpr ←→ ???. That is, the right hand side of the relation is not fixed yet. To apply
the addition rule, however, it has to have the form Plus ?? ??. With every rule application, we
know more about the exact form of this term, until we finally end up with Plus (Num 1) (Times

(Num 2) (Num (3))) :

1 FExpr←→ (Num 1) expr

1 PExpr←→ (Num 1) expr

1 SExpr←→ (Num 1) expr

2 FExpr←→ (Num 2) expr

2 PExpr←→ (Num 2) expr

3 FExpr←→ (Num 3) expr

2 ∗ 3 PExpr←→ (Times (Num 2) (Num 3)) expr

1 + 2 ∗ 3 SExpr←→ (Plus (Num 1) (Times (Num 2) (Num 3))) expr

The process of finding, for a given s such that s SExpr , a corresponding term t such that
t expr , with s SExpr ←→ t expr is called parsing. A parser has to be complete, in the sense that
for every s SExpr it should find the corresponding abstract syntax term. Furthermore, it has to
be unambiguous, and return for every s SExpr a unique t. The inverse process is called unparsing.
Since each of the parsing rules given above directly corresponds to a production rule of SExpr , it
is trivial to show the completeness using rule induction.

We can use the inference rules given above in another direction, and instead of deriving a
term t expr for a given s, we can start with an abstract syntax term and derive a matching
arithmetic expression. This process is called unparsing. Unparsing is, in our example and in
general, ambiguous. It is also not necessarily complete, although it is for the arithmetic expression
we defined. Going one step further and converting the concrete syntax token sequence back into a
string is called pretty printing. Pretty printing is useful, for example, to view intermediate code in
a compiler, or in tools which re-format a program. Pretty printing is even more ambiguous than
unparsing, since we are free to add spaces and new lines in many places. A pretty printer aims at
choosing the most readable representation, which is of course a very subjective measure.

3 Higher Order Abstract Syntax

Let us extend our simple language of arithmetic expressions by introducing variables and a let-
construct to bind variables to values:

let x = 3 let x = 3

in x+1 in let y = x+1

in x+y

We need to extend the set of rules which define the concrete and abstract syntax accordingly.

2

Concrete Syntax: A let-expression acts like a parenthesised expression, and therefore behaves
like an FExpr for priority purposes. As with numbers, where we use int to denote an integer
without further specifying it, we use id to represent an identifier:

e1 SExpr e2 SExpr

let id = e1 in e2 FExpr

Abstract Syntax: Variables are represented by terms, similar to numbers, with the exception
that the argument of the term is a string id which contains the name of the variable. A let-
expression is represented by a term which requires three arguments: an identifier (bound variable),
a term (the term the variable is bound to), and the body of the let-expression, i.e., the term in
which the variable is defined. Since the first argument has to be an identifier, we can drop the
var operator in the argument position:

(Var id) expr

(Var id) expr t1 expr t2 expr

(Let id t1 t2) expr

3.1 Scope of a Variable

Given an expression let x = t1 in t2, the variable x is bound in t2, but not in t1.
The term t2 is called the scope of x, and x is bound to the value of t1 everywhere in t2. In

particular, in the following situation where the same variable is bound twice, the outer binding is
shadowed by the inner binding, and the value of the expression is 10.

let x = 3

in let x = 5

in x + x

Note that the scope of a variable in a let-binding is defined differently in Haskell: x is bound
in t1 and t2. As a consequence, the compiler accepts an expression

let

x = x+1

in x

even though the expression cannot be evaluated and leads to a run-time exception.

3.2 Representation of Variables

In the first order abstract syntax definition of arithmetic expressions, variables are treated just
like numbers and represented by terms, although they play a special role. Higher order abstract
syntax addresses this shortcoming, and provides variables and variable bindings as part of the
meta-language: first order terms can either

1. be a constant (e.g, ints, strings), or

2. have the form (Op t1 . . . tn), where t1 to tn are terms,

- (Num 4)

- (Plus (Num 2) (Num 1))

In addition, a higher order term can

3. be a variable

4. have the form x .t ′, meaning the variable x is bound in term t ′

- x. (Plus x (Num 1))

3

- x.y. (Plus x y)

A term of the form x .t is called an abstraction. It is a term whose value depends1 on the value of
the variable x. In this respect, it is similar to a function body.

An abstraction x.t is said to bind all occurrences of x in t. All variables of a term which are
not bound at the position they occur are called free variables of that term. We denote the set of
free variables of a term by FV (t). It is inductively defined as follows:

FV (int) = {}
FV (x) = {x}
FV (o (t1, . . . , tn)) = FV (t1) ∪ . . . FV (tn)
FV (x .t) = FV (t) \ {x}

For example, x is in FV (plus (x, let (5, x.x))), which corresponds to the concrete syntax expres-
sion

x + (let x = 5 in x)

since

FV ((Plus x (Let (Num 5) (x.x))))
=FV (x) ∪ FV (Let (Num 5) (x.x))))
={x} ∪ FV (5) ∪ FV (x.x)
={x} ∪ (FV (x) \ {x})
={x} ∪ ({x} \ {x})
={x} ∪ {}

If we want to use higher order syntax, we have to change the rules for variables and let-bindings
in the definition of the abstract syntax:

id expr

t1 expr t2 expr

(Let t1 (id.t2)) expr

and adapt the the translation accordingly:

id FExpr ←→ (id expr)

e1 SExpr ←→ t1 expr e2 SExpr ←→ t2 expr

let id = e1 in e2 FExpr←→ (Let t1 (id.t2)) expr

Now, the operator let accepts only two arguments, one being the right hand side, the second the
abstraction of the body of the body.

3.3 Substitution and α-equivalence

Consider, for example, the following two expressions:

let let

x = 3 y = 3

in in

x+1 y+1

They express exactly the same computation and only differ in the choice of the variable names.
They are represented by the term Let (Num 3) (x. Plus x (Num 1)) and Let (Num 3) (y.

Plus y (Num 1)) respectively. If two terms, as in the above example, can be made identical by
renaming the variables, they are called α-equivalent, written ≡α. As the name suggests, ≡α is an
equivalence relation. This means ≡α is

1. reflexive: for all terms t, t ≡α t

1More precisely, may depend, since it is possible that x does not actually occur in t, as in x .1

4

2. symmetric: for all terms t1, t2, if t1 ≡α t2 then t2 ≡α t1

3. transitive: for all terms t1, t2, and t3: if t1 ≡α t2 and t2 ≡α t3 then t1 ≡α t3

If we want to determine the value of a let-expression, at some point, we have to replace the variable
in the body with the value the variable is bound to. This process of replacing a variable with a
value, or in general, an arbitrary term, is called substitution. We use the notation:

t[x := t′]

to describe a term t where every free occurrence of x has been replaced by t′. We can rename the
variables in a term now by replacing the variable at its binding occurrence, and substituting it
wherever it occurs freely in the term:

x.t ≡α y.t[x := y], if y ̸∈ FV (t)

We have to be careful about the choice of y, though. If we try to rename x to y in the term
x. x + y we do not want to end up with the term y. y + y, since the y in the original term
is now captured, and the new term is not α-equivalent to the original term anymore. Therefore,
we require that the new variable does not occur freely anywhere in the original term.

Let us now give the exact definition of substitution, first for variables:

x [x := y] = y
z [x := y] = z , if x ̸= z
(Op t1 . . . tn)[x := y] = (Op t1[x := y] . . . tn [x := y])
x .t [x := y] = x .t
z .t [x := y] = z .t [x := y] if x ̸= z , y ̸= z ,
y .t [x := y] = undefined if x ̸= y

To avoid the problem of capturing, we require that the variable which is introduced does not occur
anywhere in the binding position of a term. Similarly, if we substitute terms, we require that none
of the free variables in the new term occurs at a binding position in the original term:

x [x := u] = u
z [x := u] = z , if x ̸= z
(Op t1 . . . tn)[x := u] = (Op t1[u := x] . . . tn [u := x])
x .t [x := u] = x .t
z .t [x := u] = z .t [u := x] if x ̸= z , z ̸∈ FV (u),
y .t [x := u] = undefined if y ∈ FV (u)

In practice, it does not matter that substitution is only partially defined, because we can always
rename the variable such that clashes do not occur. Many compilers will actually rename all the
variables defined by the user and map them to distinct names to simplify further compilation
steps. When convenient, We will silently assume that the programs we are dealing with have
distinct names.

5

